结构之法 算法之道

截止到2014年12月9日,博客内所有博文集锦CHM文件下载:http://pan.baidu.com/s/1gdrJndp,下载后打开前去掉勾选即可看到文章!

Latest articles

[原]BAT机器学习面试153题:SVM xgboost 特征工程你都会么

前言 本博客曾经在10~13年连续4年整理过各大公司数据结构和算法层面的笔试题、面试题,很快,2014年之后,机器学习大伙,很多公司开始招AI方面的人才,很多同学也会从网上找各种各样的机器学习笔试题、面试题,但和数据结构方面的题不同,AI的题网上极少。 2017年起,我和团队开始整理BAT机器学习面试1000题系列,几万人开始追踪,目前七月在线官网/APP的题库已聚集AI笔试面试题4000题,今日起,我们会根据机器学习、深度学习、CV、NLP、推荐系统等各方向精选相关的面试题,供大家找工作中随时查阅、复 作者:v_JULY_v 发表于 2020/08/29 12:15:29 原文链接 https://blog.csdn.net/v_JULY_v/article/details/108292943...

[原]我的青春十年:10年写博1600万PV、五年创业30万学员

写博与创业:10年1600万PV,5年30万学员养成记 前沿 距离上一篇博客又过去了大半年,世事难料,特别是今年上半年突发新冠肺炎,打乱了很多人、公司的计划和节奏,多难兴邦,目前疫情即将完全过去,今天正好是5.20,在这个特殊的日子小有感慨,加之如今写博十年、创业五年,也到了该总结一下的时候,包括我们去年19年便经历过很多事,有些事 如果不及时总结 可能就忘掉了曾经的经验/教训,为了不致忘却 时常自省,特陈此文。 第一阶段:创业前的五年:写博、读书会、面试&算法讲座 2010年 .. 作者:v_JULY_v 发表于 2020/05/20 14:54:40...

[原]推荐引擎算法学习导论

推荐引擎算法学习导论:协同过滤、聚类、分类 作者:July 出处:结构之法算法之道 引言 昨日看到几个关键词:语义分析,协同过滤,智能推荐,想着想着便兴奋了。于是昨天下午开始到今天凌晨3点,便研究了一下推荐引擎,做了初步了解。日后,自会慢慢深入仔细研究(日后的工作亦与此相关)。当然,此文也会慢慢补充完善。 本文作为对推荐引擎的初步... 作者:v_JULY_v 发表于 2020/01/05 20:47:04 原文链接 https://blog.csdn.net/v_JULY_v/article/details/7184318 ...

[原]程序员面试、算法研究、编程艺术、红黑树、机器学习5大系列集锦

程序员面试、算法研究、编程艺术、红黑树、机器学习5大经典原创系列集锦与总结 作者:July--结构之法算法之道blog之博主。 时间:2010年10月-2018年5月,一直在不断更新中.. 出处:http://blog.csdn.net/v_JULY_v。 说明:本博客中部分文章经过不断修改、优化,已集结出版成书《编程之法:面试和算法心得》。 前言 开博4年有余,... 作者:v_JULY_v 发表于 2020/01/05 20:42:56 原文链接 https://blog.csdn.net/v_JULY_v/article/details/6543438 ...

[原]如何通俗理解word2vec

如何通俗理解word2vec 前言 今年上半年,我在我的上一篇LSTM博客中写道:“众所周知,我们已经把SVM、CNN、xgboost、LSTM等很多技术,写的/讲的国内最通俗易懂了,接下来,我们要把BERT等技术也写的/讲的国内最通俗易懂,成为入门标准,而且不单单是从NNLM、Word2Vec、Seq2Seq、Seq2Se... 作者:v_JULY_v 发表于 2019/10/23 19:28:18 原文链接 https://blog.csdn.net/v_JULY_v/article/details/102708459 ...

[原]如何从RNN起步,一步一步通俗理解LSTM

如何从RNN起步,一步一步通俗理解LSTM 前言 提到LSTM,之前学过的同学可能最先想到的是ChristopherOlah的博文《理解LSTM网络》,这篇文章确实厉害,网上流传也相当之广,而且当你看过了网上很多关于LSTM的文章之后,你会发现这篇文章确实经典。不过呢,如果你是第一次看LSTM,则原文可能会给你带来不少障碍:... 作者:v_JULY_v 发表于 2019/05/06 23:47:54 原文链接 https://blog.csdn.net/v_JULY_v/article/details/89894058 ...

[原]如何通俗理解EM算法

                                         如何通俗理解EM算法     前言     了解过EM算法的同学可能知道,EM算法是数据挖掘十大算法,可谓搞机器学习或数据挖掘的基本绕不开,但EM算法又像数据结构里的KMP算法,看似简单但又貌似不是一看就懂,想绕开却绕不开的又爱又恨,可能正在阅读此文的你感同身受。     一直以来,我都坚持一个观点:当你学习某个知识点感觉学不懂时,十有八九不是你不够聪明,十有八九是你所看的资料不够通俗、不够易懂(如果还是不行,问人)。     写本EM笔记之前,翻阅了很多资料,有比较通俗的,但大部分都不太好懂,本文力争通俗易懂且完整全面,包括原理、推导、应用,目标是即便其他所有EM文章你都没看懂,那本文也要让你看懂。...

[原]BAT机器学习面试1000题系列(第1~305题)

BAT机器学习面试1000题系列整理:July、元超、立娜、德伟、贾茹、王剑、AntZ、孟莹等众人。本系列大部分题目来源于公开网络,取之分享,用之分享,且在撰写答案过程中若引用他人解析则必注明原作者及来源链接。另,不少答案得到寒小阳、管博士、张雨石、王赟、褚博士等七月在线名师审校。说明:本系列作为国内首个AI题库,首发于七月在线实验室公众号上:julyedulab,并部分更新于本博客上,且已于17年双十二当天上线七月在线官网、七月在线Android APP、七月在线iPhone APP,后本文暂停更新和维护,另外的近3000道题都已更新到七月在线APP或七月在线官网题库板块上,欢迎天天刷题。另,可以转载,注明来源链接即可。前言    July我又回来了。    之前本博客整理过数千道微软等公司的面试题,侧重数据结构、算法、海量数据处理,详见:微软面试100题系列,今17年,近期和团队整理BAT机器学习面试1000题系列,侧重机器学习、深度学习。我们将通过这个系列索引绝大部分机器学习和深度学习的笔试面试题、知识点,它将更是一个足够庞大的机器学习和深度学习面试库/知识库,通俗成体系且循序渐进。 ...

[原]Kaggle—So Easy!百行代码实现排名Top 5%的图像分类比赛

Kaggle—So Easy!百行代码实现排名Top 5%的图像分类比赛作者:七月在线彭老师说明:本文最初由彭老师授权翟惠良发布在公众号“七月在线实验室”上,现再由July重新编辑发布到本blog上。Github: https://github.com/pengpaiSH/Kaggle_NCFM前言    根据我个人的经验,学好AI,有五个必修:数学、数据结构、Python数据分析、ML、DL,必修之外,有五个选修可供选择:NLP、CV、DM、量化、Spark,然后配套七月在线的这些必修和选修课程刷leetcode、kaggle,最后做做相关开源实验。    今天,咱们就来看一看:如何用百行代码实现Kaggle排名Top 5%的图像分类比赛。1. NCFM图像分类任务简介 为了保护和监控海洋环境及生态平衡,大自然保护协会(The...

[译]GAN之父在NIPS 2016上做的报告:两个竞争网络的对抗(含译文下载)

GAN之父在NIPS 2016上做的报告:两个竞争网络的对抗作者:Ian Goodfellow翻译:七月在线DL翻译组译者:范诗剑 汪识瀚 李亚楠审校:管博士 寒小阳 加号责编:翟惠良 July声明:本译文仅供学习交流,有任何翻译不当之处,敬请留言指正。转载请注明出处。下载:https://ask.julyedu.com/question/7664前言    今年春节前,萌生一个想法,深度学习越发火热,但一些开创性的论文多半来自国外,如果组织一些朋友把这些英文论文翻译成中文,是不是可以让信息流通的更快、更顺畅?    说干就干。春节前两周组建好七月在线DL翻译组,然后翻译组的小伙伴们即开始翻译,有一组更是在春节期间翻译了GAN之父在NIPS 2016上做的长达60页的报告,当时着实震惊了一把。而且,这篇报告中的GAN也不过是2016年刚火起来,如此,本报告兼具经典和最新,值得好好学习一下。 ...

Discover, share and read the best on the web

Subscribe to RSS Feeds, Blogs, Podcasts, Twitter searches, Facebook pages, even Email Newsletters! Get unfiltered news feeds or filter them to your liking.

Get Inoreader
Inoreader - Subscribe to RSS Feeds, Blogs, Podcasts, Twitter searches, Facebook pages, even Email Newsletters!