微软研究院AI头条

Latest articles

科学匠人 | 用AI打开生物学研究的另一扇窗

编者按:在生物学研究领域,传统基于分子、细胞、生理学实验方法进行的研究通常被称作湿实验,如今这些传统的生物学方法在某种程度上都遇到了瓶颈,而被称作干实验的计算机模拟和生物学相结合的研究,正在利用 AI、大数据等创新手段,为生物学研究打开了另一扇窗。今天就让我们一起来看一看三位在微软亚洲研究院从事计算生物学研究的研究员的跨界经历。2020年,一场突如其来的新冠疫情让生物学与 AI 等技术的融合进一步加速。算力的提升、机器学习等模型的精进、大量数据的积累,都让计算生物学的研究条件越来越完善,传统生物学方法无法解答的问题,可以通过这样的跨界研究有所突破,因此,计算生物学成为了生物学研究的一个重要分支。早在一两年前,微软亚洲研究院就开始涉及计算生物学领域,近年来,基于干实验的生物学研究已在研究院逐渐起步,研究院里也因此多了几位生物学博士。所谓干实验,是与传统生物学实验室的湿实验相对应的一种研究方式,它不需要在物理层面操作实际的细胞、分子等进行实验,而是用计算机模拟的方式,去做生物学的实验,甚至预测和推论。计算机科学和生物学碰撞出了哪些火花?计算生物学的未来发展是怎样的?又是什么原因让越来越多生物学的人才选择加入了微软亚洲研究院?让我们从三位微...

新一代多模态文档理解预训练模型LayoutLM 2.0,多项任务取得新突破!

编者按:近年来,预训练模型是深度学习领域中被广泛应用的一项技术,对于自然语言处理和计算机视觉等领域的发展影响深远。2020年初,微软亚洲研究院的研究人员提出并开源了通用文档理解预训练模型 LayoutLM 1.0,受到了广泛关注和认可。如今,研究人员又提出了新一代的文档理解预训练模型 LayoutLM 2.0,该模型在一系列文档理解任务中都表现出色,并在多项任务中取得了新的突破,登顶 SROIE 和 DocVQA 两项文档理解任务的排行榜(Leaderboard)。未来,以多模态预训练为代表的智能文档理解技术将在更多的实际应用场景中扮演更为重要的角色。文档智能是一种旨在针对扫描文件或数字商业文档(图像、PDF 文件等)进行理解并分析,同时将其中的非结构化信息进行抽取和结构化的技术。与传统的信息抽取技术不同,文档智能技术不仅仅依赖于商业文档中的文本信息,同时还会考虑更多的富文本图像和布局位置等信息对文档进行分析。例如,图1中包含了多种文档类型(包括表单、收据、发票、商业报告),不同的文档类型反应了人们所关心的信息会出现在不同的视觉位置上,而这些视觉位置经常由文档模板的类型和风格所决定。因此,如果希望能够从不同类型的文档中精确地分析和抽取...

带你读论文 | 值分布强化学习

编者按:值分布强化学习(Distributional Reinforcement Learning)是一类基于价值的强化学习算法,也是一类新兴的强化学习方法。该方法达到了非分布式强化学习方法上新的基准性能,也与神经科学有着内在联系,因此具有很高的研究价值。本文将带大家一起选读多个近期值分布强化学习相关的研究工作,这些工作的发展脉络清晰、研究动机明确,为后续的进一步研究提供了重要参考。什么是值分布强化学习值分布强化学习(Distributional Reinforcement Learning,Distributional RL)是一类基于价值的强化学习算法(value-based Reinforcement Learning,value-based RL)。经典的基于价值的强化学习方法尝试使用期望值对累积回报进行建模,表示为价值函数...

GLGE:业界首个通用语言生成评估基准

编者按:最近,除了针对自然语言理解(NLU)任务设计的预训练语言模型,许多针对自然语言生成(NLG)任务而设计的预训练语言模型也被不断提出。然而,这些模型往往通过不同的任务、数据集、和评测指标进行评估,目前还没有一个统一的通用评测基准。为了填补 NLG 通用评测基准这一空缺,微软亚洲研究院提出了业内首个通用的语言生成评测基准 GLGE (General Language Generation Evaluation benchmark)。GLGE 提供了三种不同难度的的评测基准,以方便研究者们更全面或更有选择性地对模型进行评估。近年来,多任务的评测基准(multi-task evaluation benchmark)推动了预训练语言模型如 BERT、RoBERTa、XLNet 等在 NLP 领域的发展。这些通用的评测基准(general...

12月精选文章回顾

2020年度大片来袭!科技前瞻研究院的最新研究进展与资源分享一次性全部 get干货放送顶会技巧大礼包请查收!科学匠人科研需要数十年如一日的坚持书单AI领域的闯关宝典 + 盖茨年度书单AI for GoodAI有声内容创作,予力视障人士畅听世界你也许还想看: 原文

星跃计划 | MSR Asia-MSR Redmond 联合科研项目人才招募中

微软亚洲研究院、微软雷德蒙研究院联合推出“星跃计划”!该计划旨在为优秀人才创造与微软全球两大研究院的研究团队一起聚焦真实前沿问题的机会,你将在国际化的科研环境中、在多元包容的科研氛围中、在顶尖研究员的指导下,做有影响力的研究!首批推出的跨研究院联合科研项目覆盖自然语言处理、数据智能、计算机系统与网络、智能云等领域。研究项目如下:High-performance Distributed Deep Learning, Intelligent Data Cleansing, Intelligent Power-Aware Virtual  Machine  Allocation, Neuro-Symbolic Semantic Parsing for Data Science, Next-Gen Large...

微软亚洲研究院祝大家新年快乐!

原文

微软亚洲研究院2020技术精选集

不平凡的2020年即将结束。在这个回顾过去、展望未来的时刻,微软亚洲研究院推出了2020年度技术精选专辑。先让我们一起通过专辑的 “MV”,来看一下这张技术精选集都收录了哪些黑科技,看完请移步正文,测试一下你的阅读理解能力吧!作者: AI 群星流派: 未来/创新介质: 图文问答发行时间: 2020-12出版者: 微软亚洲研究院特别收录:MV无法识别图片真假?用“X光”照一下我这5.0的眼睛都没看出来是假照片,它竟然还指出了合成边界。随着 AI 换脸算法的精进,如今“眼见也不一定为实”,因此换脸鉴别技术变得愈发重要。Face X-Ray是微软亚洲研究院鉴别换脸图像真假的最新突破。研究员们发现图像都有其特殊的噪声标记,被替换过的图像会留下更换边界。透过 Face X-Ray,即使再天衣无缝的合成图像,也能看到合成的痕迹,让换脸图片难逃其法眼。Q:以下对于Face...

基于Transformer的高效、低延时、流式语音识别模型

编者按:Transformer 模型在自然语言领域被提出后,目前已经扩展到了计算机视觉、语音等诸多领域。然而,虽然 Transformer 模型在语音识别领域有着更好的准确率,但在流式的语音识别场景下,Transformer 模型的速度和延时往往阻碍其实际的应用。为了解决这个问题,微软 Azure 语音团队与微软亚洲研究院的研究员们一起提出了一套结合 Transformer 家族的编码器和流式 Transducer 框架的解决方案,并提出了 Mask is all you need 的方法对模型进行快速训练以及解码,让 Transformer 模型能够在普通的计算设备上进行快速的语音识别。从场景上,语音识别可以分为流式语音识别和非流式语音识别。非流式语音识别(离线识别)是指模型在用户说完一句话或一段话之后再进行识别,而流式语音识别则是指模型在用户还在说话的时候便同步进行语音识别。流式语音识别因为其延时低的特点,在工业界中有着广泛的应用,例如听写转录等。Transformer流式语音识别挑战目前,Transformer...

发顶会论文,怎么就那么难?

随着 AI 领域越来越火热,各大顶会的论文发布似乎也越来越难:AAAI 2020 放榜,8800 篇提交论文创历史记录;CVPR 2020 被称为十年来最难投中的一届;IJCAI 2020 审稿堪称史上最严,创下了史上最低的接收率 12.6%;OSDI 2020 录用率不足18%;NeurIPS 2020 论文投稿数量创历史最高,但接收率却为史上最低……在这种情况下,不免有人感叹:“发顶会论文,怎么就那么难?”为此,我们特地收集了10个与如何“收割”顶会论文相关的问题,采访了三位来自微软亚洲研究院不同研究领域的研究员,他们都曾担任过不同顶会的领域主席。在圣诞节来临之际,希望前辈们的建议,能作为一份特别的礼物,帮助大家在科研道路上越走越远!陈薇陈薇博士,微软亚洲研究院机器学习组高级研究员,主要研究机器学习各个分支的理论解释和算法改进,目前的研究兴趣包括深度学习理论、深度强化学习、差异隐私、因果关系和博弈论等。陈薇曾担任...

Discover, share and read the best on the web

Subscribe to RSS Feeds, Blogs, Podcasts, Twitter searches, Facebook pages, even Email Newsletters! Get unfiltered news feeds or filter them to your liking.

Get Inoreader
Inoreader - Subscribe to RSS Feeds, Blogs, Podcasts, Twitter searches, Facebook pages, even Email Newsletters!