Matrix67: The Aha Moments - RSS Feed

Latest articles

趣题:切完大饼和蛋糕,让我们切一切甜甜圈

我正在餐桌前吃早餐。餐桌上有一张圆形的大饼,有一个方形的蛋糕,还有一个甜甜圈。我依次思考了下面三个问题。你能帮我想出它们的答案吗? 3 刀切一张圆形的大饼,最多能把它分成多少块?或者说,3 条直线最多能把一个圆盘分成多少个区域? 4 刀切一个方形的蛋糕,最多能把它分成多少块?或者说,4 个平面最多能把一个正方体分成多少个区域? 3 刀切一个甜甜圈,最多能把它分成多少块?或者说,3 个平面最多能把一个(实心的)环面分成多少个区域? 提示:上一个问题的答案总会为下一个问题提供线索。 3 刀切一张圆形的大饼,最多能把它分成多少块?或者说,3 条直线最多能把一个圆形分成多少个区域? ​ 这是一个经典的小学问题。答案是 7 块。如图所示,事实上,当直线数分别为 1, 2,...

称假币问题的变形:无假币与“天平机”

大家应该听说过 9 枚硬币的问题吧。9 枚硬币当中有 8 枚是真币,有 1 枚是假币。所有的真币重量都相同,假币的重量则稍重一些。怎样利用一架天平两次就找出哪一枚硬币是假币?方法是,先把 9 枚硬币分成三组,每组各 3 枚硬币。然后,把第一组放在天平左边,把第二组放在天平右边。如果天平向左倾斜,说明假币在第一组里;如果天平向右倾斜,说明假币在第二组里;如果天平平衡,说明假币在剩下的第三组里。现在,假币的嫌疑范围就被缩小到 3 枚硬币之中了。选择其中 2 枚硬币分放在天平左右两侧。类似地,如果天平左倾,就说明左边那枚硬币是假的;如果天平右倾,就说明右边那枚硬币是假的;如果天平平衡,就说明没放上去的那枚硬币是假的。 9 硬币问题实在是太经典了,你甚至能在人教版小学五年级下册的课本里看到它。9 硬币问题还衍生出了很多变形,其中最著名的当属...

UyHiP 趣题:能否把一个凸四边形分成若干个凹四边形

下面这个趣题出自 Using your Head is Permitted 谜题站 2016 年 10 月的题目:能否把一个凸四边形分成若干个凹四边形? 答案是否定的。我们给出一个非常漂亮的证明。在下面的文字中,我们用“优角”一词来表示一个大于 180 度小于 360 度的角。 假设某个凸四边形被分成了若干个凹四边形。容易看出,每个凹四边形的内角中都有且仅有一个优角(如果没有优角,它就不是凹四边形;如果有两个或更多的优角,就与四边形内角和为 360 度矛盾)。 现在,让我们把每个凹四边形的那个优角顶点涂成蓝色。容易看出,每个蓝色顶点只能成为一个凹四边形的一个优角顶点(否则汇聚于该点处的角度之和会超过 360 度)。这意味着,每个蓝色顶点都唯一地对应一个凹四边形。如果图中的蓝色顶点一共有...

Lissajous 曲线的动画演示

随着常数 m 和 n 的变化,参数方程 x = sin(m · t), y = sin(n · t) 将会画出一系列漂亮的曲线。法国物理学家 Jules Antoine Lissajous 曾在 1857 年研究过这类曲线,因此人们把它叫做 Lissajous 曲线。我在 reddit 上看到了一个 Lissajous 曲线的动画演示,觉得看起来确实非常爽;但那个动画里没有解释曲线的生成方法,很多细节也有让人不太满意的地方,于是决定自己制作一个。这个动画展示的是 m = 13, n = 18 时的 Lissajous 曲线。

位换记号、排列测试与状态图:杂耍中的数学

2016 年 7 月 30 日至 8 月 7 日,第 39 届欧洲杂耍大会(European Juggling Convention)在荷兰的阿尔梅勒举行, 8 月 3 日凌晨的搏击之夜(Fight Night)自然再度成为了众人关注的焦点——它是杂耍斗(combat juggling)这项运动最大的赛事。在杂耍斗的圈子里,有两个响当当的大名你必须要知道:德国选手 Jochen Pfeiffer 目前世界排名第二,之前拿过 6 次搏击之夜的冠军;英国选手 Luke Burrage 目前世界排名第一,之前拿过 8 次搏击之夜的冠军。这一年的比赛中,两位老将均以完胜的成绩轻松进入 32 强,并在淘汰赛阶段过关斩将,最终成功在决赛场上相遇。最终,世界排名第二的 Jochen 以 5 比 4 的成绩击败了世界排名第一的...

UyHiP 趣题:几个特殊的强正则图

下面这个趣题出自 Using your Head is Permitted 谜题站 2016 年 8 月的题目,稍有改动。 屋子里有若干个人,任意两个人都有恰好 1 个共同的朋友。这有可能吗?有可能。比方说,屋子里有 9 个人,其中 8 个人正好组成 4 对朋友,第 9 个人则和前面 8 个人都是朋友。容易验证,任意两个人都有恰好 1 个共同的朋友。我们可以用下面这个图表示此时这 9 个人之间的朋友关系,其中每个点代表一个人,如果两个人是朋友,就在他们之间连一条线。 除了上图展示的情况之外,我们还能构造出很多别的同样满足要求的情况。事实上,上述方案可以扩展到一切奇数个人的情况,比如下面这样: 现在,假设屋子里有若干个人,任意两个人都有恰好 2 个共同的朋友。这有可能吗?有可能。比方说,屋子里有...

趣题:为什么偏偏是 6 格?

无穷多个相同大小的正方形格子排成一排,向左右两边无限地延伸。每个格子里都有 0 个、 1 个或多个原子。每一次,你可以对它们做下面两种操作之一: 选择某个格子,保证该格子内至少含有 1 个原子。将该格子内的其中 1 个原子分裂为 2 个,从而使得该格子内的原子数量减 1 ,两边的邻格里的原子数量分别加 1。 选择某个格子,保证两边的邻格里均至少含有 1 个原子。从两边的邻格里各取 1 个原子聚合起来,从而使得两边的邻格里的原子数量分别减 1 ,该格子内的原子数量加 1。 初始时,某个格子里有 1 个原子。现在,你需要在若干次操作之后,让它右移 6 格。也就是说,你需要用若干次操作把下面的第一个图变成第二个图(其中,数字 1 表示该格内的原子数为 1 )。继续阅读下去之前,你不妨自己先试一试。你可以在纸上画好格子,用硬币、大米、巧克力豆等物体代替原子。...

IMO2016 趣题:Geoff 的青蛙

2016 年 IMO 的第 6 题(也就是第二天比赛的第 3 题)非常有趣,这恐怕算得上是近十年来 IMO 的所有题目中最有趣的题目之一。平面上有 n ≥ 2 条线段,每两条线段都有一个交点,并且任意三条线段都不交于同一点。 Geoff 打算在每条线段的其中一个端点处放置一只青蛙,并让每只青蛙都朝向它所在线段的另一个端点。然后, Geoff 将会拍 n – 1 次手。每次拍手时,每只青蛙都立即向前跳到它所在线段的下一个交点处(青蛙们在跳跃过程中始终不会改变方向)。 Geoff 希望巧妙地安排初始时放置青蛙的方法,使得在整个过程中,任意两只青蛙都不会同时到达某个相同的交点。这个题目有两个小问。 证明:当 n 为奇数时, Geoff 一定有办法实现他的要求。 证明:当 n 为偶数时, Geoff...

捡石子游戏、 Wythoff 数表和一切的 Fibonacci 数列

让我们来玩一个游戏。把某个国际象棋棋子放在棋盘上,两人遵循棋子的走法,轮流移动棋子,但只能将棋子往左方、下方或者左下方移动。谁先将棋子移动到棋盘的最左下角,谁就获胜。如果把棋子放在如图所示的位置,那么你愿意先走还是后走?显然,答案与我们放的是什么棋子有关。 这个游戏对于兵来说是没有意义的。在如图所示的地方放马或者放象,不管怎样都无法把它移动到棋盘的最左下角,所以我们也就不分析了。因此,我们只需要研究王、后、车三种情况。 在国际象棋中,车每次可以横着或竖着走任意多格。在上述游戏中,受到规则的限制,车每次只能向左或者向下走任意多格。如果问题中的棋子是车,答案就非常简单了:你应该选择先走。你应该直接把车移到棋盘对角线上的位置(如左图所示),然后不管对方怎么走,你都把它移回到棋盘的对角线上。这样,你就能保证必胜了。...

如果把 3 · n + 1 问题改为 3x · n + 1 问题

Collatz 猜想也叫做 3 · n + 1 问题。这可能是数学中最为世人所知的未解之谜。它是如此初等,连小学生都能听懂它的内容;但解决它却如此之难,以至于 Paul Erdős 曾说:“或许现在的数学还没准备好去解决这样的问题。”这究竟是一个什么样的问题呢?让我们来看一下 Collatz 猜想的叙述: 任意取一个正整数 n 。如果 n 是奇数,则把 n 变为 3 · n + 1 ;如果 n 是偶数,则把 n 变为 n/2 。不断重复操作,则最终一定会得到 1 。 举个例子,如果 n = 26 ,那么经过下面 10 步之后,它最终变为了 1 : 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 Collatz 猜想说的就是,这个规律对于所有正整数...

Discover, share and read the best on the web

Follow RSS Feeds, Blogs, Podcasts, Twitter searches, Facebook pages, even Email Newsletters! Get unfiltered news feeds or filter them to your liking.

Get Inoreader
Inoreader - Follow RSS Feeds, Blogs, Podcasts, Twitter searches, Facebook pages, even Email Newsletters!